Dynamical localization in chaotic systems: spectral statistics and localization measure in the kicked rotator as a paradigm for time-dependent and time-independent systems.
نویسندگان
چکیده
We study the kicked rotator in the classically fully chaotic regime using Izrailev's N-dimensional model for various N≤4000, which in the limit N→∞ tends to the quantized kicked rotator. We do treat not only the case K=5, as studied previously, but also many different values of the classical kick parameter 5≤K≤35 and many different values of the quantum parameter kε[5,60]. We describe the features of dynamical localization of chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic or/and mixed-type Hamilton systems. We generalize the scaling variable Λ=l(∞)/N to the case of anomalous diffusion in the classical phase space by deriving the localization length l(∞) for the case of generalized classical diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is very well described by the Brody distribution, systematically better than by other proposed models, for various Brody exponents β(BR). (2) We study the eigenfunctions of the Floquet operator and characterize their localization properties using the information entropy measure, which after normalization is given by β(loc) in the interval [0,1]. The level repulsion parameters β(BR) and β(loc) are almost linearly related, close to the identity line. (3) We show the existence of a scaling law between β(loc) and the relative localization length Λ, now including the regimes of anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems [Batistić and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even in the mixed-type systems (after separation of regular and chaotic eigenstates).
منابع مشابه
Ehrenfest time in the weak dynamical localization
The quantum kicked rotor QKR is known to exhibit dynamical localization in the space of its angular momentum. The present paper is devoted to the systematic first-principles without a regularizer diagrammatic calculations of the weak-localization corrections for the QKR. Our particular emphasis is on the Ehrenfest time regime—the phenomena characteristic for the classical-to-quantum crossover o...
متن کاملMarkovian Behaviour and Constrained Maximization of the Entropy in Chaotic Quantum Systems
The separation of the Schrödinger equation into a Markovian and an interference term provides a new insight in the quantum dynamics of classically chaotic systems. The competition between these two terms determines the localized or diffusive character of the dynamics. In the case of the Kicked Rotor, we show how the constrained maximization of the entropy implies exponential localization.
متن کاملA universal ionization threshold for strongly driven Rydberg states
The suppression of quantum transport across disordered media is one of the most spectacular consequences of destructive quantum interference. Originally predicted by Anderson [1] in his treatment of electrons propagating in disordered one dimensional lattices, Anderson localization has now become a general concept which prevails in abundant scenarios of coherent quantum transport in the presenc...
متن کاملErgodic properties of quantum conservative systems
In this paper we discuss the ergodic properties of quantum conservative systems by analyzing the behavior of two different models. Despite their intrinsic differencies they both show localization effects in analogy to the dynamical localization found in Kicked Rotator.
متن کاملar X iv : h ep - t h / 95 01 05 4 v 1 1 3 Ja n 19 95 Environment - Induced Effects on Quantum Chaos : Decoherence , Delocalization and Irreversibility ∗
Decoherence in quantum systems which are classically chaotic is studied. It is wellknown that a classically chaotic system when quantized loses many prominent chaotic traits. We show that interaction of the quantum system with an environment can under general circumstances quickly diminish quantum coherence and reenact some characteristic classical chaotic behavior. We use the Feynman-Vernon in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 6 شماره
صفحات -
تاریخ انتشار 2013